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Abstract This paper presents a proposal to improve

REGAL, a concept learning system based on a distributed

genetic algorithm that learns first-order logic multi-modal

concept descriptions in the field of classification tasks.

This algorithm has been a pioneer system and source of

inspiration for others. Studying the philosophy and

experimental behaviour of REGAL, we propose some

improvements based principally on a new treatment of

counterexamples that promote its underlying goodness in

order to achieve better performances in accuracy, inter-

pretability and scalability, so that the new system meets

the main requirements for classification rules extraction in

data mining. The experimental study carried out shows

valuable improvements compared with both REGAL and

G-Net distributed genetic algorithms and interesting

results compared with some state-of-the-art representative

algorithms in this field.

Keywords Concept learning � Distributed genetic

algorithms � Cooperative evolution � Multi-modalities

1 Introduction

In general terms in the field of Artificial Intelligence,

classification problems can be faced by numerous algo-

rithms (Lanzi 2008), which belong to different Machine

Learning (ML) paradigms. Finding a correspondence

between the problem and its optimum algorithm currently

remains an open issue (Ho and Pepyne 2002).

The so-called Evolutionary Rule-Based Systems (Freitas

2003) are a type of Genetics-Based Machine Learning

(GBML) that use rule sets as knowledge representation.

One of the strengths of these approaches is the use of

evolutionary algorithms as search mechanisms which

allows for efficient searches over complex search spaces

(Orriols-Puig and Bernadó-Mansilla 2009; Reynolds and

de la Iglesia 2009; Rivero et al. 2009). Many approaches

have been proposed in the field of symbolic GBML

(Orriols-Puig et al. 2008; Fernández et al. 2010), which

offer some advantages compared with non-symbolic tech-

niques, such as the production of interpretable models,

without assuming a priori information about the domain of

the problem, not even prior relationships among attributes

(Freitas 2001), with the possibility of obtaining compact

and precise rule sets.

In the framework of data mining (Tan et al. 2006a;

Witten and Frank 2005), obtaining classification models

with high prediction in current databases could be a com-

plex, inefficient and ineffective task due to the size of the

data, so system scalability should necessarily be added to

the desired virtues of the algorithms in terms of accuracy

and interpretability, as a counterpart to the scaling problem

(Yang and Wu 2006; Provost and Kolluri 1999; Orriols-

Puig et al. 2008).

Regarding scalability, there are three main approaches

to resolve this issue (Yang and Wu 2006):
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• prior knowledge to guide the search,

• data reduction,

• algorithm scalability.

One way to achieve algorithm scalability is the use of

distributed computation that involves computational

decentralisation across a number of processors, which may

be physically located in different components, subsystems,

systems or facilities. REGAL (Giordana and Neri 1995)

and G-Net (Giordana et al. 1997) are based on distributed

genetic algorithms which increase computational resources

via the use of data distribution along with an array of

computers to achieve greater performance.

In this paper, we present REGAL-TC (REGAL with

Treatment of Counterexamples), an enhanced version of

REGAL which improves the convergence of the nodes, the

quality of the rules and optimises the final classifier

introducing a new treatment of the counterexamples,

showing advantages in interpretability, accuracy and sca-

lability after the experimental study and statistical analysis

carried out, revealing an outperformance in these respects

in comparison with their predecessor and interesting results

with state-of-the-art representative algorithms.

The outline of our contribution is as follows. In Sect. 2,

we review the context of genetic learning evolutionary

systems based on rules, highlighting and emphasising the

genetic cooperative-competitive type with distributed

implementation. Section 3 is devoted to the analysis and

synthesis of the proposed changes. The experimental study

carried out is shown in Sect. 4, as is the statistic assess-

ment, Sect. 5 being where we reach conclusions and

comment some future works and proposals.

2 Preliminaries: genetic learning and REGAL

In Witten and Frank (2005), the authors propose a classi-

fication of the different data mining tasks. One of them

consists of classification problems where the goal is to

predict the value of a distinguished discrete variable (the

class) using the values of the remaining ones. Due to the

success obtained by evolutionary algorithms when applied

to complex optimisation problems, they are shown to be

one of the most robust methods to deal with real-world

problems (Holden and Freitas 2009; Marı́n-Blázquez and

Martı́nez Pérez 2009; Stout et al. 2009).

2.1 Genetic learning

Genetic algorithms were not specifically designed for

learning but as optimisation algorithms based on a global

search in the solution space. However, as Mitchell (1982)

noticed, mutatis mutandi, the problem can be formulated as

a search in a hypothesis space corresponding to candidate

descriptions in a specified language. Genetic algorithms are

appropriate searching engines to find the solution model

which best fits with the learning task (Orriols-Puig et al.

2008).

When considering a rule system and focusing on

learning rules, the different genetic methods follow two

approaches in order to encode rules within a population of

individuals (Fernández et al. 2010):

1. The Pittsburgh approach, in which each individual

represents a rule set. In this case, each chromosome

evolves a complete rule base and competes among

them in an evolutionary way. GABIL (De Jong et al.

1993), GIL (Janikow 1993) and GAssist (Bacardit

et al. 2007) are three paradigmatic examples that

follow this approach.

2. In the second approach, each individual codifies a

single rule, and the whole rule set is provided by

juxtaposition of several individuals in the population

(rule cooperation) or via different evolutionary runs.

The last approach embraces three generic proposals:

• The Michigan approach. These kinds of systems are

usually called learning classifier systems (Holland

and Reitman 1977): XCS (Wilson 1995) and UCS

(Bernadó-Mansilla and Garrell-Guiu 2003) belong to

this category.

• IRL (Iterative Rule Learning) approach, in which each

chromosome represents a rule. Chromosomes compete in

every GA run, choosing the best rule per run. The global

solution is formed by the best rules obtained when the

algorithm is run multiple times. SIA (Venturini 1993),

ESIA (Liu and Kwok 2000) and HIDER (Aguilar-Ruiz

et al. 2003) are proposals that follow this approach.

• GCCL (Genetic Cooperative-Competitive Learning)

approach, in which the complete population, or a

subset of it, encodes the rule base. In this model, the

chromosomes compete and cooperate simultaneously.

COGIN (Greene and Smith 1993), REGAL (Giordana

and Neri 1995), G-Net (Giordana et al. 1997), OCEC

(Jiao et al. 2006), EDGAR (Rodrı́guez et al. 2010) and

DOGMA (Hekanaho 1997) are examples that can be

located in this framework.

We may consider that REGAL has been a pioneer system

in the so-called niching genetic algorithms and a source of

inspiration for others. Because of its inherent qualities, this

algorithm served as a starting point for our research.

Our proposal is focused on the study of treatment of the

counterexamples, which will drive the different improve-

ments described in the next section. The main aim is to

obtain a better performance in accuracy, interpretability

and scalability.
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2.2 An overview of REGAL

REGAL is a learning system based on a distributed genetic

algorithm that is capable of learning multi-modal concepts

described in first-order logic.

In REGAL, each individual, also called a disjunct,

encodes a partial solution, i.e., it consists of a conjunctive

formula, and the whole population is a redundant set of

these partial solutions.

The task of learning concepts by the disjunction of

conjunctive formulas, where each formula covers a region

or group of examples (modalities), structurally leads to a

methodology of niches and species. The ‘‘ad hoc’’ hybrid

architecture follows the underlying philosophy of REGAL

of processing the aforementioned niches and species in a

distributed way.

The REGAL architecture, as described in Cantú-Paz

(1998), Alba and Troya (1999), and Alba et al. (2002), can

be seen in Fig. 1, consisting of a network of nodal genetic

algorithms, also known as Genetic Algorithm Learners

(GALs), coordinated by a Supervisor (Bianchini et al.

1995; Weilie et al. 2000; Nojima et al. 2008).

The Supervisor dynamically assigns a subset of the

complete dataset to the nodes according to a long-term

strategy, the so-called cooperative evolution (Neri 2002),

which is aimed at distributing different species on different

nodes in order to reduce the genetic pressure of large dis-

juncts on small ones (Carvalho and Freitas 2002; Orriols-

Puig and Bernadó-Mansilla 2005). In this respect, we have

used the cooperative strategy DTSU (Describe Those Still

Uncovered) as described by Neri (2002).

The Supervisor, constantly monitoring the state of all

GALs, can easily focus the space exploration by modifying

the set of examples assigned to any GAL. In this way,

nodes with associated different subsets of examples shall

become niches where different species can grow up.

Therefore, the mating between individuals of different

niches can be controlled by tuning the migration parameter

l: Finally, the Supervisor periodically extracts a rule base

from the global population, i.e., the best individual from

each node, and, when it finds a satisfactory one, according

to a chosen stopping criterion, it halts the whole system.

In order to let the system learn at least a reasonable rule

base, when it is not able to improve the best description

found at the moment, a freezing mechanism has been

introduced. The freezing mechanism is a restarting of the

learning process. It is assumed that this description repre-

sents a target concept modality, and that it is not further

improvable. Consequently, it can be saved and its covered

examples can be removed from the learning set, in order to

move the focus of the hypothesis space exploration.

A GAL process is basically a classic genetic algorithm.

It uses binary fixed string chromosomes based on VL21

language (Michalski 1983) totally suitable for the task of

this algorithm, which is an important point taking into

account that ‘‘the representation scheme can severely limit

the windows by which the system observes its world’’

(Michalewicz 1996).

Figure 2 shows an example of bit strings encoding for-

mulas for a given concept K formed by the conjunction of

the predicates: colour and shape, each one having a set of

attributes. Taking this concept into account, a set of indi-

viduals can be generated setting to 1 or 0 those values that

are selected or not, respectively.

Regarding the genetic operators, it uses selection,

crossover, mutation and seeding operators. The most rele-

vant differences compared with a classical genetic algo-

rithm concern seeding and selection.

The seeding operator is used to dynamically generate

new individuals to cover an example. It can be seen as a

more sophisticated version of the new event operator used

in GIL and of the creation operator used in SIA. More

precisely, for a given example, the seeding operator returns

an individual covering it. The process is as follows:

Seeding nð Þ
Let n be an example

Generate a random bit string s

defining an individual u
Turn to 1 the smallest set of bits in s

necessary to satisfy u on n
Return uð Þ

Fig. 1 Abstract view of REGAL

Fig. 2 Bit strings corresponding to the individuals u1 and u2

obtained for the concept K

REGAL-TC: a distributed genetic algorithm
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The selection operator implemented is Universal Suf-

frage (US). The basic idea is that the individuals to be

mated are not chosen directly from the current population;

instead, it is the examples that choose which individuals

are selected. The selection procedure works as follows.

A number gM�M of examples is randomly selected,

where M is the cardinality of the population and g is the

generation gap and represents the proportion of formulas

selected for mating. To each selected example nk, a set

R nkð Þ; containing the formulas covering it, is associated.

The set R nkð Þ corresponds to a ‘‘roulette wheel’’ rk, divided

into sectors, each one associated to a uj 2 R nkð Þ. The

extension of the sector associated with uj is proportional to

the ratio between uj’s total fitness, calculated as the fitness

of the individual multiplied by its multiplicity (number of

formulas that are equal in the population), and the sum of

the total fitness values of all the formulas in R nkð Þ: For

each spin of the wheel rk, the winning individual is chosen.

Its ability to let subpopulations not disappear, irrespec-

tive of the cardinality, reaching an equilibrium state has

been theoretically and experimentally proven (Neri and

Saitta 1996).

The US selection operator favours those individuals

with higher coverage. If an example is not yet covered, it

would be sensible to dynamically generate new individuals

covering it using the seeding operator.

The fitness function is very simple in comparison with

similar algorithms, such as G-Net and DOGMA, which use

MDL (Rissanen 1989) to implement their fitness function,

although in REGAL’s fitness only the consistency and

simplicity of the solution are considered, while the com-

pleteness is considered by the US operator. The fitness of

an individual u is given by the formula:

f uð Þ ¼ f z;wð Þ ¼ 1þ Azð Þ e�w

where w is equal to the number of counterexamples cov-

ered by u, and z is a measure of u’s simplicity ðz 2 ½0; 1�Þ,
calculated as the average number of bits equal to 1 in the

bit string. The parameter A is user-tunable and its value

was fixed by the authors at A ¼ 0:1:

REGAL uses four crossover operators; there are the

well-known two-point and uniform crossovers, and the

generalising and specialising crossovers, specifically

designed for the task at hand. The synergy of multiple

crossover operators has been studied previously (Yoon and

Moon 2002).

The generalising and specialising crossovers need

additional explanation. As shown in Fig. 2, the bit string of

an individual can be divided into substrings, each corre-

sponding to a specific predicate. In both crossover opera-

tors, a set of predicates is randomly selected. The bit strings

in the parent individuals corresponding to the predicates

not selected are copied unchanged into the corresponding

offsprings. Then, for each selected predicate, a new sub-

string is generated by AND-ing (OR-ing) the bits of the

corresponding substring of the parents. The generated

substring is then copied in both offsprings.

Given a pair of bit strings ðs1; s2Þ; representing two

individuals u1 and u2 selected for mating, crossover will

be applied with an assigned probability pc: Then, the spe-

cific crossover type is selected stochastically by taking into

account the features of s1 and s2: The conditional proba-

bilities pu of uniform crossover, p2pt of two-point cross-

over, ps of specialising crossover and pg of generalising

crossover are computed as follows:

pu ¼ 1� a � fnð Þ � b
p2pt ¼ 1� a � fnð Þ � 1� bð Þ
ps ¼ a � fn � r
pg ¼ a � fn � 1� rð Þ

ð1Þ

In expressions (1), a and bða; b 2 ½0; 1�Þ are tunable

parameters, fn is the normalised mean value of the fitness of

the two individuals u1 and u2 :

fn ¼
f u1ð Þ þ f u2ð Þ

2fmax

where fmax is the highest value of fitness of the two

individuals and r is the ratio:

r ¼ nþ u1ð Þ þ n� u1ð Þ þ nþ u2ð Þ þ n� u2ð Þ
2 E þ Cð Þ ð2Þ

where nþ uð Þ and n� uð Þ are the number of examples and

counterexamples covered by u; respectively, whereas

E and C are the number of the training examples and

counterexamples, respectively.

As far as the mutation operator is concerned, it is

identical to the classical one. It is applied to generate off-

spring with probability pm � pc and can affect any bit of

the string.

Figure 3 shows the general schema of a GAL. Basically,

the process in a GAL is the same as in a classical genetic

algorithm. The difference resides in the communication

among nodes, which allows a node to share its individuals

with others. In each cycle of the algorithm, the GAL selects

a subpopulation BnðtÞ and combines with some individuals

from other nodes according to the US operator, then it

L. I. Lopez et al.
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performs crossover and mutation and sends a part of BnðtÞ
to other nodes. Finally, the GAL obtains the population for

the next cycle Anðt þ 1Þ combining AnðtÞ and BnðtÞ and

sends the current best individual to the Supervisor.

3 Description of our proposal: REGAL-TC

In this section, we describe the proposed improvements.

In order to achieve an optimum and predictable system,

we have introduced enhancements in aspects which are

mostly related with a new treatment of counterexamples.

In short, the counterexamples will be the ones that will

modulate the strategies in that point. These improvements

let the algorithm reach a better consistency, accuracy and

scalability.

3.1 Balance between generalisation and specialisation

crossovers

Regarding the generalisation and specialisation crossovers,

we propose a new theoretical reformulation providing a

new expression to work out the probability of the crossing

specialisation/generalisation operators. In this way, we try

to achieve a better balance between the uses of each of

them.

As we seen before, in REGAL, the probabilities for the

specialisation and generalisation crossover operators are

given by ps and pg; where it is r that drives the use of one

of the two crossover operators by means of (1). Notice that

the formula (2) of r has a tendency to use the specialising

crossover ps in most cases. This is due to the fact that the

numerator does not distinguish between examples or

counterexamples but only the absolute values; this makes

the specialisation operator be used, even though the num-

ber of negative cases covered is zero, in which case it

would be more suitable to use the generalisation.

Instead of the expression (2), we propose the equation:

r ¼ n� u1ð Þ þ n� u2ð Þ
nþ u1ð Þ þ n� u1ð Þ þ nþ u2ð Þ þ n� u2ð Þ

We have examined the new expression, which yields a

convenient balance between the numbers of runs of ps and

pg: In this case, r represents the ratio of negative coverage,

i.e., the number of counterexamples covered by the two

individuals, thus, the higher the value of n� u1ð Þ and

n� u2ð Þ; the higher the value of r and therefore the

specialisation crossover will be used in order to try to

reduce the coverage of the counterexamples. On the

contrary, for lower values of n� u1ð Þ and n� u2ð Þ, the

tendency is to use the generalising crossover.

3.2 Seeding operator

In the same way as in the new r equation, the counterex-

amples will be the ones which will direct the process to

reformulate the philosophy and implementation of the

seeding operator, which is used when the GAL needs

mainly to create a new subpopulation or find a new indi-

vidual for these examples which are not covered by any

individual, so that it is necessary to make up a individual

for this target. The question is to obtain good rules with a

low negative coverage by means of this complementary

strategy from the beginning, to speed up the convergence

and the consistency of the final classifier.

The modification is based on the study of the individual

yielded by the seeding operator, comprehensively analys-

ing the negative covering of each attribute and calculating

the entropy taking into account the formula proposed in

Zhang et al. (2005), we can calculate the negative infor-

mation of each attribute of a individual by means of the

formula:

I AjRð Þ ¼ log2

P C ¼ cmjPn
i¼1 A ¼ við Þ

� �

P C ¼ cmð Þ

where P C ¼ cmjPn
i¼1 A ¼ við Þ

� �
is the proportion of attri-

bute A with value vi under C ¼ cm; P C ¼ cmð Þ is the

proportion of class C with value cm in the training set.

Notice that, in our case, cm corresponds to the value of the

counterexamples class.

Once the negative information for each attribute is cal-

culated, we try to reduce the number of counterexamples

covered by the individual; the process works as follows:

Fig. 3 GAL scheme

REGAL-TC: a distributed genetic algorithm
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• For each attribute of the individual, the negative

information is calculated by means of the above

formula.

• With all the attributes, a tournament is performed,

taking into account the value of the negative informa-

tion, in order to choose one of them.

• In the last stage, we drop all the values of the attribute

without compromising the positive coverage (coverage

of the examples) of the rule, i.e., leaving the value that

makes the coverage of the seeded example possible.

With this new seeding approach, we obtain more con-

sistent rules reducing the number of counterexamples

covered by it. Due to the fact that we use the negative

information of the rule, we decide to name this new

seeding as NIR-Seeding (Negative Information of the Rule

Seeding).

3.3 Convergence of GALs

Taking into account the GALs, we improve the speed up to

the local minimum or maximum, preventing excessive

interchange between nodes and Supervisor.

As shown in Fig. 3, in REGAL, each node delivers an

individual per cycle. We propose more iteration per node

with the stopping criterion to send the Supervisor the best

individual that does not improve any further in this stage.

In this way, the genetic canonical algorithm is allowed

more interrelation and hence, more exploration in the

searching space according to the underlying philosophy of

these algorithms.

Figure 4 shows the new schema of a GAL; notice that

the difference resides in the stopping criterion before

sending the best individual to the Supervisor. With this new

strategy, a GAL will only send the best individual when

this fails to improve.

3.4 Dropping strategy

In order to achieve a better interpretability and dramati-

cally lower the overfitting, we propose a new policy that

attempts to discard the irrelevant rules that may appear

during the evolution process.

When the classifier calculated in the Supervisor is

unable to improve, the freezing strategy is launched. This

consists of saving the actual classifier, at the same time

removing all the examples covered, whereupon the sys-

tem restarts the process trying to cover the remaining

examples.

Once the freezing is applied, it could be possible for the

remaining examples to belong to specific regions of the

search space, inducing new extremely specific individuals

which draw proportionately too many counterexamples.

We have observed experimentally that in complex datasets

those low qualities individuals worsening simplicity and

making overfitting have appeared.

We propose a policy to filter those individuals which

will be part of the final classifier, worsening the simplicity

and the accuracy of the final solution.

Based on the ideas exposed in Domingos (1995) and

Freitas (2001), we have implemented a strategy in the

Supervisor as an abortion method, dropping those indi-

viduals that do not reach a certain quality threshold, which

depend on the dataset in question.

As in Michalski (1980), we used the weighted sum of

the consistency and coverage as a measure of individual

quality, which is one of the simplest of those studied in An

and Cercone (2000) and is given by the formula:

QWS ¼ w1 � cons Rð Þ þ w2 � cov Rð Þ

where w1 and w2 are user-defined weights belonging to

½0; 1� and summed 1. And cons Rð Þ and cov Rð Þ are the

consistency and the coverage of the individual,

respectively.

Each of the improvements has a different impact and

of course in different respects, but what is observed

empirically is the synergistic advantage when they work

together, increasing accuracy, simplicity and above all

Fig. 4 New schema of a GAL
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scalability, a necessary condition when mining large

databases.

4 Experimental study

This section describes the experimental study developed to

test the proposed method and analyses the results obtained.

It is divided into four subsections: in the first one, we

describe the algorithms set-up and the datasets employed;

in the second, we develop a study of the One-vs-One

(Knerr et al. 1990) and One-vs-All (Anand et al. 1995;

Clark and Boswell 1991) schemes in order to check the

behaviour of REGAL-TC in multi-class problems; then, we

compare our proposal with other reference distributed

methods, REGAL and G-Net. Finally, we present a com-

parison of REGAL-TC with some state-of-the-art

algorithms.

4.1 Experimental framework

4.1.1 Algorithms considered for comparison

Apart from REGAL and G-Net as representative distrib-

uted algorithms, we consider some algorithms for com-

parison based on the study developed in Fernández et al.

(2010), selecting some representative methods. These are

OCEC (Jiao et al. 2006) and COGIN (Greene and Smith

1993) as GCCL methods. Due to CORE (Tan et al. 2006b)

has shown a low performance, we decided to replace it by

GIL (Janikow 1993), which is a GBML algorithm that only

works with nominal values, as in our proposal. We have

also chosen C4.5 (Quinlan 1993) and RIPPER (Cohen

1995) as non-evolutionary reference. All the methods

selected are included in the KEEL software (Alcalá-Fdez

et al. 2009). Table 1 summarises the main features of each

algorithm indicating the name, family and default param-

eters used.

4.1.2 Datasets

For the study developed, we selected 25 datasets from the

UCI repository (Asuncion and Newman 2007). As in

Fernández et al. (2010), we removed the missing values

(cleveland, breast cancer, dermatology, hepatitis and wis-

consin) and stratified the sample at 10% for the largest

datasets (abalone, nursery and penbased). Table 2 shows

the characteristics of each one, indicating the id and the

name of the dataset, the number of examples (#Ex.), the

number of attributes (#Atts.), the number of numerical

(#Num.) and nominal (#Nom.) attributes, and the number

of classes (#Cl.).

Note that REGAL, REGAL-TC, G-Net, OCEC, COGIN

and GIL do not cope with numerical values. A prepro-

cessing discretisation step thus became necessary. We used

the Class-Attribute Dependent Discretiser (Ching et al.

1995). In those cases where the discretiser removes all the

values of an attribute, we have fixed four as the minimum

number of intervals.

4.1.3 Performance measure

To evaluate the performance of the algorithms, the Cohen’s

kappa measure (Cohen 1960; Ben-David 2007) was used.

Cohen’s kappa scores the successes independently for each

class and aggregates them. It can be calculated using the

confusion matrix by means of the following expression:

kappa ¼ n
Pm

i¼1 hii �
Pm

i¼1 TriTci

n2 �
Pm

i¼1 TriTci

where hii is the cell count in the main diagonal (the number

of true positives for each class), n is the number of

examples, m is the number of class labels, and Tri; Tci are

the rows’ and columns’ total counts, respectively ðTri ¼Pm
j¼1 hij; Tci ¼

Pm
j¼1 hjiÞ: Cohen’s kappa ranges from -1

(total disagreement) through 0 (random classification) to 1

(perfect agreement).

In the comparison of REGAL-TC with REGAL and G-

Net, we also used the number of rules obtained as a mea-

sure of the interpretability of each system.

We validate the results obtained with each algorithm by

means of a fivefold cross-validation method. The original

sample is randomly partitioned into five subsamples. Of the

five subsamples, a single one is retained as the validation

data for testing the model (test set), and the remaining four

subsamples are used as training data (training set). The

cross-validation process is then repeated five times (the

folds), with each of the five subsamples used exactly once

as the validation data. This process is repeated six times

using different random seeds. Thus, we have 30 results

which are averaged to produce a single estimation.

4.1.4 Statistical tests for performance comparison

To provide statistical support for the analysis of the results,

we use the hypothesis testing techniques. Specifically, we

use non-parametric test (Demsar 2006; Garcı́ a et al. 2010).

In this study, we used Wilcoxon Signed-Rank Test

(WSRT) (Wilcoxon 1945; Garcı́ a et al. 2009) to perform a

pairwise comparison between two methods. It is a non-

parametric alternative to the paired t test which ranks the

differences in performance of two classifiers for each

dataset, ignoring the signs, and compares the ranks for the

positive and negative differences. WSRT can reject the null

REGAL-TC: a distributed genetic algorithm
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hypothesis (Zar 2007) (equal accuracy and interpretability

for compared algorithms in our study) when a is smaller

than 0.05.

In the case of the number of rules, to make the differ-

ences comparable, we propose to adopt a normalised dif-

ference DIFF, defined by the expression:

DIFF ¼ MEAN otherð Þ �MEAN referenceð Þ
MEAN otherð Þ

where MEAN xð Þ represents the number of rules means

obtained by the x algorithm. This difference expresses the

improvement percentage of the reference algorithm on the

other one.

In the case of multiple comparisons, we use the Friedman

test (Friedman 1937; Garcı́ a et al. 2010) to detect statistical

differences among a group of results and the Finner post hoc

test (Finner 1993) to observe the difference in performance

among the methods and the retention or rejection of the

hypothesis with the level of significance fixed.

4.2 Experimental study of binarization strategies

As Table 2 shows, we have chosen some multi-class

datasets for the statistical comparison. However, REGAL-

TC is a binary classifier, so it is necessary to use binari-

zation techniques to deal with multi-class datasets. These

techniques consist of dividing the original data set into

two-class subsets, learning a different binary model for

each new subset.

The most common strategies are called ‘‘One-vs-One’’

(OVO) (Knerr et al. 1990), consisting of dividing the

dataset into as many binary subsets as possible combina-

tions between pair of classes, and ‘‘One-vs-All’’ (OVA)

(Anand et al. 1995; Clark and Boswell 1991), where one

class is distinguished from all other classes obtaining as

many subsets as number of classes.

In both strategies, once a classifier is obtained for

each subset, an aggregation method is applied to calcu-

late the predicted class for a given problem. The sim-

plest way is the application of a voting strategy

(Friedman 1996), where each classifier votes for the

predicted class and the one with the largest amount of

votes is predicted.

The aim of this study is to check which of these tech-

niques (OVO or OVA) works better with REGAL-TC. We

run our algorithm with all multi-class datasets shown in

Table 2 using both strategies. The results obtained can be

seen in Table 3, indicating the dataset ID, the kappa

measure in test of REGAL-TC with OVO strategy and

OVA strategy, and the number of rules obtained by

REGAL-TC with the OVO strategy and with the OVA

strategy.

To check for statistical differences between the two

strategies, we performed a Wilcoxon Signed-Rank Test

whose results are shown in Table 4 for the kappa measure

and in Table 5 for the number of rules. We can reject the

null hypotheses with a 95% of confidence for the kappa

since the p value obtained is 0.02000 and is lower than

0.05. In the case of the number of rules, we cannot reject

the null hypotheses. In subsequent sections, we therefore

use OVO strategy for REGAL and REGAL-TC to perform

the comparisons.

Table 1 Methods considered for comparison

Method Family Parameters

COGIN GCCL Misclassification error level = 2, gen. limit = 1,000, crossover rate = 0.9, negation bit = yes

OCEC GCCL Number of total generations = 500, number of migrating/exchanging members= 1

GIL Pittsburgh Pop. size = 40, number of gen. = 1,000, w1 = 0.5, w2 = 0.5, w3 = 0.01, rules exchange = 0.2, rule

exchange selection = 0.2, rules copy = 0.1, new event = 0.4, rules generalisation = 0.5, rules

drop = 0.5, rules specialisation = 0.5, rule split = 0.005, nominal rule split = 0.1, linear rule

split = 0.7, condition drop = 0.1, conjunction to disjunction = 0.02, introduce condition = 0.1, rule

directed split = 0.03, reference change = 0.02, reference extension = 0.03, reference

restriction = 0.03, condition level prob. = 0.5, lower threshold = 0.2, upper threshold = 0.8

REGAL GCCL Number of nodes = 6, population size per node = 133, maximum number of generations = 500,

maximum number of iterations for freezing = 30, generation gap = 0.9, cross probability = 0.6,

A = 0.5, B = 0.5, mutation probability = 0.001, migration rate = 0.2

G-Net GCCL Macro-cycles = 20, micro-cycles = 200, G-nodes = 6, population = 100

REGAL-TC GCCL Number of nodes = 6, population size per node = 133, maximum number of generations = 500,

maximum number of iterations for freezing = 30, generation gap = 0.9, cross probability = 0.6, cross

A = 0.5, cross B = 0.5, mutation probability = 0.001, fitness A = 0.1, migration rate = 0.2,

Qws ¼ 0:05; w1 = 0.5, w2 = 0.5

C4.5 non-Evolutionary Prune = true, confidence level = 0.25, minimum number of item-sets per leaf = 2

RIPPER non-Evolutionary Size of growing subset = 66, repetitions of the optimisation stage = 2
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Table 2 Datasets summary

description
id Dataset #Ex. #Atts. #Num. #Nom. #Cl.

aba abalone 418 8 7 1 28

aus australian credit approval 690 14 8 6 2

bal balance scale 625 4 4 0 3

bre breast cancer 286 9 0 9 2

car car evaluation 1,728 6 0 6 4

cle cleveland 297 13 13 0 5

con contraceptive method choice 1,473 9 6 3 3

crx japanese credit screening 125 15 6 9 2

der dermatology 366 33 1 32 6

eco ecoli 336 7 7 0 8

fla solar flare 1,389 10 0 10 6

ger german credit data 1,000 20 6 14 2

gla glass identification 214 9 9 0 7

hab haberman 306 3 3 0 2

hea heart 270 13 6 7 2

hep hepatitis 155 19 6 13 2

iri iris 150 4 4 0 3

lym lymphography 148 18 3 15 4

new new-thyroid 215 5 5 0 3

nur nursery 1,296 8 0 8 5

pen pen-based recognition 1,099 16 16 0 10

tic tic-tac-toe endgame 958 9 0 9 2

veh vehicle 846 18 18 0 4

wis wisconsin 683 9 9 0 2

zoo zoo 101 17 0 17 7

Table 3 Results obtained by

REGAL-TC using OVO and

OVA strategies

Dataset Kappa #R

REGAL-TCOVO REGAL-TCOVA REGAL-TCOVO REGAL-TCOVA

aba 0.0768 0.1235 181.100 696.393

bal 0.4719 0.4237 34.933 32.200

car 0.9295 0.9784 58.700 39.167

cle 0.1977 0.2617 73.333 86.133

con 0.0188 0.0863 2.900 12.433

der 0.8589 0.9110 20.400 22.700

eco 0.5413 0.5348 68.533 78.900

fla 0.4634 0.6341 71.133 88.133

gla 0.4207 0.4834 53.300 66.133

iri 0.8067 0.8000 12.067 6.700

lym 0.5190 0.5177 20.933 13.367

new 0.6508 0.6762 18.793 11.300

nur 0.9201 0.9172 83.667 39.167

pen 0.6430 0.7597 151.600 195.500

veh 0.3134 0.3784 143.600 134.600

zoo 0.9337 0.9303 8.667 21.433

Avg. values 0.5478 0.5885 62.729 96.516
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4.3 Comparison of distributed methods

In this section, we perform a comparison between REGAL-

TC, REGAL and G-Net. On the one hand, we study the

results obtained in terms of Cohen’s kappa (as a measure of

accuracy) and the number of rules (as a measure of inter-

pretability); on the other, we perform a scalability study to

check the behaviour of the algorithms when the number of

nodes grows.

4.3.1 Performance study

Table 6 shows the kappa means for REGAL, G-Net and

REGAL-TC and the mean number of rules obtained in test

by each one for all the datasets shown in Table 2. The

average rank and the rank position are also included.

The result obtained for the p value by the Friedman

test for kappa measure is 0.02065, which is lower than

0.05. This implies that we can reject the null hypotheses

that all methods are equivalent and, therefore, we can

perform the Finner post hoc procedure. The results

obtained by this procedure are shown in Table 7 where

REGAL-TC is the control algorithm. We can conclude

that REGAL-TC is the best method outperforming

REGAL and G-Net.

For the number of rules, the Friedman test obtains a

p value of 0.00035. Table 8 shows the results obtained for

the Finner post hoc procedure. In this case, we can con-

clude that G-Net obtains the least number of rules out-

performing REGAL, although there is no statistical

Table 4 Wilcoxon Signed-Rank Test for kappa

Algorithm R? R- p value

REGAL-TCOVO–REGAL-TCOVA 113.0 23.0 0.02000

Table 5 Wilcoxon Signed-Rank Test for rules

Algorithm R? R- p value

REGAL-TCOVO–REGAL-TCOVA 58.0 78.0 0.60510

Table 6 Average kappa value

and number of rules obtained in

test

Test #R

REGAL G-Net REGAL-TC REGAL G-Net REGAL-TC

aba 0.0728 0.0208 0.1235 862.27 23.80 696.39

aus 0.4605 0.6458 0.6322 53.13 17.77 32.20

bal 0.3776 0.5293 0.4237 47.83 6.40 39.17

bre 0.2082 0.1805 0.1864 49.80 34.90 86.13

car 0.9645 0.2653 0.9784 41.63 9.53 22.70

cle 0.2586 0.1620 0.2617 150.37 72.63 78.90

con 0.0153 0.0243 0.0863 241.10 9.13 88.13

crx 0.6143 0.6613 0.6285 66.53 31.70 66.13

der 0.7791 0.5877 0.9110 166.37 65.23 6.70

eco 0.5463 0.4407 0.5348 106.67 22.17 13.37

fla 0.5688 0.2903 0.6341 214.47 17.03 11.30

ger 0.2399 0.1554 0.2558 181.23 90.93 39.17

gla 0.4416 0.4051 0.4834 94.57 44.07 195.50

hab -0.0007 0.0825 0.0921 9.80 2.47 134.60

hea 0.5264 0.4896 0.5032 30.83 38.00 14.93

hep 0.2644 0.3849 0.3583 9.87 7.73 21.43

iri 0.7800 0.7950 0.8000 7.93 6.50 25.70

lym 0.5458 0.5044 0.5177 25.67 24.53 28.43

new 0.6292 0.6838 0.6762 12.27 14.53 38.67

nur 0.9822 0.5035 0.9172 157.07 31.33 35.13

pen 0.7068 0.3272 0.7597 600.50 108.37 6.70

tic 0.8856 0.8840 0.9927 34.87 50.60 1.00

veh 0.3160 0.1304 0.3784 312.70 120.10 1.13

wis 0.6901 0.9066 0.6864 23.13 12.20 9.57

zoo 0.9308 0.9335 0.9303 22.03 8.70 16.27

Avg. values 0.5122 0.4398 0.5501 140.91 34.81 68.37

Avg. rank 2.12(2) 2.32(3) 1.56(1) 2.60(3) 1.48(1) 1.92(2)
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difference from REGAL-TC, since the p value is 0.11979,

which is higher than 0.05.

4.3.2 Scalability study

The goal we pursue is to check the behaviour of the

algorithms when the number of nodes is increased for a

given problem.

We executed REGAL, G-Net and REGAL-TC for all the

datasets in Table 2, fixing the number of generations and

the values of the common parameters between the algo-

rithms. For each dataset, we performed the execution with

a different number of nodes, from 1 up to 32.

In the following figures, we can see the results

obtained for the tic-tac-toe and nursery datasets as a

representative sample. It can be seen that REGAL-TC

and G-Net keep approximately the same kappa and the

number of rules while in REGAL the kappa decreases

and the number of rules grows as the number of nodes

increases.

Figures 5 and 6 show the kappa results and number of

rules obtained for the tic-tac-toe problem, respectively. It

can be seen that REGAL-TC and G-Net keep the kappa

while REGAL loses performance when the number of

nodes increases. In this case, REGAL-TC obtains the best

performance in all cases. Regarding the number of rules,

we can observe that REGAL-TC and G-Net maintain a

similar number of rules regardless of the number of nodes,

with REGAL-TC obtaining the lower number of rules.

However, REGAL greatly enlarges the number of rules

when the number of nodes increases.

Figures 7 and 8 show the kappa results and number of

rules obtained for the nursery dataset, respectively. As in

the previous case, REGAL-TC and G-Net obtain approxi-

mately the same performance indistinctly the number of

nodes, but the kappa value obtained by G-Net is lower than

REGAL-TC. Regarding REGAL, its performance slightly

decreases when the number of nodes rises.

For the number of rules, as in the tic-tac-toe dataset,

REGAL increases the number of rules when we use a

higher number of nodes. In this case, both REGAL-TC and

G-Net maintain a similar number of rules regardless the

number of nodes.

With the results obtained, it is proven that REGAL-TC

and G-Net behave stably for both the accuracy (kappa

measure) and interpretability (number of rules) regardless

of the increasing number of nodes. In contrast, the per-

formance in REGAL slightly decreases when the number

Table 7 p value of Finner post hoc procedure for kappa

i Algorithm pFinn

1 G-Net 0.01437

2 REGAL 0.04771

REGAL-TC is the control method

Table 8 p value of Finner post hoc procedure for number of rules

i Algorithm pFinn

1 REGAL 0.00015

2 REGAL-TC 0.11979

G-Net is the control method

Fig. 5 Kappa results obtained in test for the tic-tac-toe dataset

Fig. 6 Number of rules obtained in test for the tic-tac-toe dataset

Fig. 7 Kappa results obtained in test for the nursery dataset
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of nodes rises. This loss of performance comes about

because the greater the increase in the number of nodes, the

higher the number of irrelevant rules introduced in the

classifier. REGAL does not have any mechanism to avoid

this problem, resulting in overfitting and decreasing of both

the interpretability and accuracy. On the contrary, REGAL-

TC achieves a better interpretability and accuracy by

means of rules with lower negative coverage and the

dropping strategy to optimise the classifier obtained, dra-

matically lowering the overfit. REGAL-TC always presents

better performance. So, we may say in the light of the

results obtained that both algorithms (G-Net and REGAL-

TC) are scalable.

4.4 Experimental study of the state-of-the-art

In this section, we establish a comparison with some state-

of-the-art algorithms. From the study developed in (Fern-

ández et al. 2010), we try to choose those algorithms, such

as REGAL, G-Net and REGAL-TC, which need a pre-

processing discretisation step. These are OCEC, COGIN

and GIL. Furthermore, C4.5 and RIPPER were chosen as

non-evolutionary representative methods. In this study, we

Fig. 8 Number of rules obtained in test for the nursery dataset

Table 9 Average kappa value obtained in test for multi-class datasets

Test

OCEC COGIN GIL C4.5 RIPPER REGAL G-Net REGAL-TC

aba 0.0701 0.1044 0.0511 0.0873 0.0935 0.0728 0.0208 0.1235

aus 0.7162 0.6912 0.6897 0.6799 0.6300 0.4605 0.6458 0.6322

bal 0.5113 0.5363 0.3414 0.5922 0.3178 0.3776 0.5293 0.4237

bre 0.2082 0.1612 0.1966 0.2330 0.1716 0.2082 0.1805 0.1864

car 0.5535 0.1759 0.6413 0.7986 0.7591 0.9645 0.2653 0.9784

cle 0.3067 0.2132 0.1894 0.2257 0.2068 0.2586 0.1620 0.2617

con 0.1943 0.1410 0.1891 0.2568 0.2723 0.0153 0.0243 0.0863

crx 0.7262 0.6761 0.7003 0.7043 0.6387 0.6143 0.6613 0.6285

der 0.7543 0.8227 0.8033 0.9048 0.8513 0.7791 0.5877 0.9110

eco 0.4768 0.4185 0.4652 0.6998 0.6559 0.5463 0.4407 0.5348

fla 0.6290 0.5851 0.5309 0.6716 0.5891 0.5688 0.2903 0.6341

ger 0.2400 0.1508 0.3138 0.2826 0.2510 0.2399 0.1554 0.2558

gla 0.3376 0.3701 0.4098 0.5742 0.5288 0.4416 0.4051 0.4834

hab 0.0862 0.0318 0.0879 0.1521 0.1432 -0.0007 0.0825 0.0921

hea 0.5583 0.5562 0.5380 0.5866 0.5017 0.5264 0.4896 0.5032

hep 0.3646 0.1109 0.2985 0.1240 0.3191 0.2644 0.3849 0.3583

iri 0.8220 0.7427 0.8500 0.9000 0.8960 0.7800 0.7950 0.8000

lym 0.5508 0.5394 0.5602 0.5367 0.5627 0.5458 0.5044 0.5177

new 0.7132 0.6330 0.6925 0.8140 0.8769 0.6292 0.6838 0.6762

nur 0.7353 0.7412 0.7391 0.8382 0.8386 0.9822 0.5035 0.9172

pen 0.6415 0.7007 0.4319 0.8818 0.8412 0.7068 0.3272 0.7597

tic 0.5909 0.8213 0.4109 0.6766 0.9375 0.8856 0.8840 0.9927

veh 0.3647 0.3755 0.2845 0.6248 0.6104 0.3160 0.1304 0.3784

wis 0.9072 0.8990 0.9033 0.8904 0.9122 0.6901 0.9066 0.6864

zoo 0.9166 0.8838 0.9192 0.9217 0.8828 0.9308 0.9335 0.9303

Avg. values 0.5190 0.4833 0.4895 0.5863 0.5715 0.5122 0.4397 0.5501

Avg. rank 4.18(4) 5.48(7) 4.92(5) 2.72(1) 3.68(2) 5.14(6) 6.04(8) 3.84(3)
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used all the datasets shown in Table 2. Table 9 shows the

results obtained for the algorithms in test using Cohen’s

kappa. We also include the average ranking and the rank

position of each algorithm using the Friedman test.

The result obtained for the p value by the Friedman

test is 0.00001, which is lower than 0.05, so we can

perform the Finner post hoc procedure. The results

obtained by this procedure are shown in Table 10, where

C4.5 is the control algorithm. We may conclude that C4.5

is the best method, although there is no statistical dif-

ference with RIPPER and REGAL-TC. OCEC and GIL

are better than REGAL while G-Net is outperformed for

all methods.

Finally, in view of the results obtained in the experi-

mental framework, we can assert that the main aim of this

work has been achieved, i.e., to improve REGAL.

Although the C4.5 algorithm obtained the best results with

the selected datasets, our approach seemed to perform

better than other methods that handle nominal values, in

our case OCEC and COGIN, which are of the GCCL

family, GIL, and distributed GCCL REGAL and G-Net.

5 Conclusions

In this paper, we presented REGAL-TC, an improved

version of REGAL adding some new features based mainly

on a new treatment of the counterexamples to achieve a

more accurate, interpretable and scalable system.

We reported three sets of experiments on REGAL-TC.

In the first, we study the binarization techniques OVO and

OVA to verify which of these techniques works best with

REGAL-TC when dealing with multi-class datasets; in the

second, we compared REGAL-TC with two distributed

algorithms (REGAL and G-Net) in terms of performance

and scalability; finally, we perform a comparison of

REGAL-TC with some state-of-the-art algorithms. Taking

into account the results obtained, it appears that our refined

algorithm favourably competed with its predecessor and

achieved interesting results compared with some state-of-

the-art representative algorithms in this field.

Based on the experimentation described so far, we may

affirm that REGAL-TC provides solutions with a good

accuracy, finding a lower number of rules in all cases,

which is a desirable condition in most data mining systems.

In terms of scalability, it can be seen that regardless

of the number of GALs selected, REGAL-TC reaches

approximately the same accuracy while managing to keep

the number of rules. This property is very important, so that

the new system meets the main requirements for classifi-

cation rules extraction in data mining: accuracy, inter-

pretability and scalability.

As we have already commented, there is no theory that

matches a problem with its suitable model. Being aware of

this, we intend to go one step further, trying to fit our model

to the problem at hand without prior knowledge.

The ongoing works are related to several aspects, which

we think could be improved, mainly by achieving adapt-

ability in all genetic operators and in those aspects with a

static setting and implementing a new cooperative coevo-

lution method (De Jong et al. 1995; Mendes et al. 2001;

Kim and Ryu 2007). In this respect, our future works will

focus on achieving automatic adaptation to the problem

(Herrera and Lozano 2003; Gallagher and Bo 2005) in

order to reach what might be termed, metaphorically

speaking, the natural system resonance frequency.
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Cantú-Paz E (1998) A survey of parallel genetic algorithms.

Calculateurs Paralleles 10:141–171

Carvalho DR, Freitas AA (2002) A genetic algorithm with sequential

niching for discovering small-disjunct rules. In: Proceedings of

the genetic and evolutionary computation conference. Morgan

Kaufmann Publishers Inc., San Francisco, pp 1035–1042

Ching JY, Wong AKC, Chan KCC (1995) Class-dependent discret-

ization for inductive learning from continuous and mixed-mode

data. IEEE Trans Pattern Anal Mach Intell 17(7):641–651

Clark P, Boswell R (1991) Rule induction with CN2: some recent

improvements. In: Kodratoff Y (ed) Machine learning EWSL-

91. Lecture Notes in Computer Science, vol 482. Springer,

Berlin, pp 151–163

Cohen J (1960) A coefficient of agreement for nominal scales. Educ

Psychol Meas 20(1):37–46

Cohen WW (1995) Fast effective rule induction. In: Proceedings of

the 12th international conference on machine learning. Morgan

Kaufmann, pp 115–123

De Jong KA, Spears WM, Gordon D (1993) Using genetic algorithms

for concept learning. Special Issue Genet algorithms 13(2–3):

161–188

De Jong KA, Potter M, Grefenstette JJ (1995) A coevolutionary

approach to learning sequential decision rules. In: Proceedings of

the sixth international conference on genetic algorithms. Morgan

Kaufmann, pp 366–372

Demsar J (2006) Statistical comparisons of classifiers over multiple

data sets. J Mach Learn Res 7(7):1–30

Domingos P (1995) Rule induction and instance-based learning a

unified approach. In: Proceedings of the fourteenth international

joint conference on artificial intelligence, vol 2, pp 1226–1232

Fernández A, Garcı́a S, Luengo J, Bernadó-Mansilla E, Herrera F
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